21 research outputs found

    A Security Assessment of Trusted Platform Modules

    Get PDF
    Trusted Platform Modules (TPMs) are becoming ubiquitous devices included in newly released personal computers. Broadly speaking, the aim of this technology is to provide a facility for authenticating the platform on which they are running: they are able to measure attest to the authenticity of a hardware and software configuration. Designed to be cheap, commodity devices which motherboard and processor vendors can include in their products with minimal marginal cost, these devices have a good theoretical design. Unfortunately, there exist several practical constraints on the effectiveness of TPMs and the architectures which employ them which leave them open to attack. We demonstrate some hardware and software attacks against these devices and architectures. These attacks include Time of Check/Time of Use attacks on the Integrity Measurment Architecture, and a bus attack against the Low Pin Count bus. Further, we explore the possibility of side-channel attacks against TPMs

    MLI: An API for Distributed Machine Learning

    Full text link
    MLI is an Application Programming Interface designed to address the challenges of building Machine Learn- ing algorithms in a distributed setting based on data-centric computing. Its primary goal is to simplify the development of high-performance, scalable, distributed algorithms. Our initial results show that, relative to existing systems, this interface can be used to build distributed implementations of a wide variety of common Machine Learning algorithms with minimal complexity and highly competitive performance and scalability

    Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans.

    Get PDF
    Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD(+)) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD(+) precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 +/- 1.1 years, BMI 33.4 +/- 0.8 kg/m(2)) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 +/- 44 vs. 1,135 +/- 97 mumol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD(+) levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD(+) boosters can also directly affect skeletal muscle mitochondrial function in humans

    Evaluation and Management of Deficiency of Adenosine Deaminase 2: An International Consensus Statement

    Get PDF
    IMPORTANCE: Deficiency of adenosine deaminase 2 (DADA2) is a recessively inherited disease characterized by systemic vasculitis, early-onset stroke, bone marrow failure, and/or immunodeficiency affecting both children and adults. DADA2 is among the more common monogenic autoinflammatory diseases, with an estimate of more than 35 000 cases worldwide, but currently, there are no guidelines for diagnostic evaluation or management. OBJECTIVE: To review the available evidence and develop multidisciplinary consensus statements for the evaluation and management of DADA2. EVIDENCE REVIEW: The DADA2 Consensus Committee developed research questions based on data collected from the International Meetings on DADA2 organized by the DADA2 Foundation in 2016, 2018, and 2020. A comprehensive literature review was performed for articles published prior to 2022. Thirty-two consensus statements were generated using a modified Delphi process, and evidence was graded using the Oxford Center for Evidence-Based Medicine Levels of Evidence. FINDINGS: The DADA2 Consensus Committee, comprising 3 patient representatives and 35 international experts from 18 countries, developed consensus statements for (1) diagnostic testing, (2) screening, (3) clinical and laboratory evaluation, and (4) management of DADA2 based on disease phenotype. Additional consensus statements related to the evaluation and treatment of individuals with DADA2 who are presymptomatic and carriers were generated. Areas with insufficient evidence were identified, and questions for future research were outlined. CONCLUSIONS AND RELEVANCE: DADA2 is a potentially fatal disease that requires early diagnosis and treatment. By summarizing key evidence and expert opinions, these consensus statements provide a framework to facilitate diagnostic evaluation and management of DADA2

    MLSys: The New Frontier of Machine Learning Systems

    Get PDF
    Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, MLSys, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Elevated atmospheric CO \u3csub\u3e2\u3c/sub\u3e alters the arthropod community in a forest understory

    No full text
    The objective of this study was to determine the extent to which overall population sizes and community composition of arthropods in a naturally occurring forest understory are altered by elevated CO . The Free Air Concentration Enrichment (FACE) method was used to fumigate large, replicated plots in the Piedmont region of North Carolina, USA to achieve the CO concentration predicted for 2050 (~580μll ). In addition, the extent to which unrestricted herbivorous arthropods were spatially delimited in their resource acquisition was determined. Stable isotope data for spiders (δ C and δ N) were collected in ambient and elevated CO plots and analyzed to determine whether their prey species moved among plots. Elevated CO had no effect on total arthropod numbers but had a large effect on the composition of the arthropod community. Insects collected in our samples were identified to a level that allowed for an assignment of trophic classification (generally to family). For the groups of insects sensitive to atmospheric gas composition, there was an increase in the numbers of individuals collected in primarily predaceous orders (Araneae and Hymenoptera; from 60% to more than 150%) under elevated CO and a decrease in the numbers in primarily herbivorous orders (Lepidoptera and Coleoptera; from -30 to -45%). Isotopic data gave no indication that the treatment plots represented a boundary to the movement of insects or that there were distinct and independent insect populations inside and outside the treatment plots. A simple two-ended mixing model estimates 55% of the carbon and nitrogen in spider biomass originated external to the elevated CO plots. In addition to changes in insect performance, decreases in herbivorous arthropods and increases in predaceous arthropods may also be factors involved in reduced herbivory under elevated CO in this forest. © 2012 Elsevier Masson SAS. 2 2 2 2 2 2 2 -1 13 1

    Plant-Pathogenic Streptomyces Species Produce Nitric Oxide Synthase-Derived Nitric Oxide in Response to Host Signals

    Get PDF
    SummaryNitric oxide (NO) is a potent intercellular signal for defense, development, and metabolism in animals and plants. In mammals, highly regulated nitric oxide synthases (NOSs) generate NO. NOS homologs exist in some prokaryotes, but direct evidence for NO production by these proteins has been lacking. Here, we demonstrate that a NOS in plant-pathogenic Streptomyces species produces diffusible NO. NOS-dependent NO production increased in response to cellobiose, a plant cell wall component, and occurred at the host-pathogen interface, demonstrating induction by host signals. These data document in vivo production of NO by prokaryotic NOSs and implicate pathogen-derived NO in host-pathogen interactions. NO may serve as a signaling molecule in other NOS-containing bacteria, including the medically and environmentally important organisms Bacillus anthracis, Staphylococcus aureus, and Deinococcus radiodurans
    corecore